V. K. Mansinghka

      Structured priors for structure learning. (pdf) (bibtex)

      V. K. Mansinghka, C. Kemp, J. B. Tenenbaum, T. L. Griffiths:
      Proceedings of the Twenty-Second Conference on Uncertainty in Artificial Intelligence (UAI 2006)

      Modeling human performance in statistical word segmentation (bibtex)

      M. Frank, S. Goldwater, T. L. Griffiths, V. K. Mansinghka, J. B. Tenenbaum:
      Proceedings of the Twenty-Ninth Annual Conference of the Cognitive Science Society

      Learning annotated hierarchies from relational data (pdf) (bibtex)

      D. M. Roy, C. Kemp, V. K. Mansinghka, J. B. Tenenbaum:
      Advances in Neural Information Processing Systems 19
      #stochastic blockmodels, #annotated hierarchies, #hierachical

      When are probabilistic programs probably computationally tractable? (pdf) (bibtex)

      C. E. Freer, V. K. Mansinghka, D. M. Roy:
      NIPS Workshop on Monte Carlo Methods for Modern Applications
      #probabilistic programming

      Church: a language for generative models (pdf) (bibtex)

      N. D. Goodman, V. K. Mansinghka, D. M. Roy, K. Bonawitz, J. B. Tenenbaum:
      Uncertainty in Artificial Intelligence 2008
      #church, #probabilistic programming, #generative models

      AClass: An online algorithm for generative classification (pdf) (bibtex)

      V. K. Mansinghka, D. M. Roy, R. Rifkin, J. B. Tenenbaum:
      Eleventh International Conference on Artificial Intelligence and Statistics (AISTATS07)
      #classification, #dirichlet process mixture, #particle filter

      Exact and approximate sampling by systematic stochastic search (pdf) (bibtex)

      V. K. Mansinghka, D. M. Roy, E. Jonas, J. B. Tenenbaum:
      AISTATS 2009

add/edit publications